JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context.

Neurotransmitter sodium symporters (NSSs) catalyze the uptake of neurotransmitters into cells, terminating neurotransmission at chemical synapses. Consistent with the role of NSSs in the central nervous system, they are implicated in multiple diseases and disorders. LeuT, from Aquifex aeolicus, is a prokaryotic ortholog of the NSS family and has contributed to our understanding of the structure, mechanism and pharmacology of NSSs. At present, however, the functional state of LeuT in crystals grown in the presence of n-octyl-β-D-glucopyranoside (β-OG) and the number of substrate binding sites are controversial issues. Here we present crystal structures of LeuT grown in DMPC-CHAPSO bicelles and demonstrate that the conformations of LeuT-substrate complexes in lipid bicelles and in β-OG detergent micelles are nearly identical. Furthermore, using crystals grown in bicelles and the substrate leucine or the substrate analog selenomethionine, we find only a single substrate molecule in the primary binding site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app