Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

A chemically synthesized peptoid-based drag-tag enhances free-solution DNA sequencing by capillary electrophoresis.

We report a capillary-based DNA sequencing read length of 100 bases in 16 min using end-labeled free-solution conjugate electrophoresis (FSCE) with a monodisperse poly-N-substituted glycine (polypeptoid) as a synthetic drag-tag. FSCE enabled rapid separation of single-stranded (ss) DNA sequencing fragments with single-base resolution without the need for a viscous DNA separation matrix. Protein-based drag-tags previously used for FSCE sequencing, for example, streptavidin, are heterogeneous in molar mass (polydisperse); the resultant band-broadening can make it difficult to obtain the single-base resolution necessary for DNA sequencing. In this study, we synthesized and HPLC-purified a 70mer poly-N-(methoxyethyl)glycine (NMEG) drag-tag with a molar mass of - 11 kDa. The NMEG monomers that comprise this peptoid drag-tag are interesting for bioanalytical applications, because the methoxyethyl side chain's chemical structure is reminiscent of the basic monomer unit of polyethylene glycol, a highly biocompatible commercially available polymer, which, however, is not available in monodisperse preparation at an - 11 kDa molar mass. This is the first report of ssDNA separation and of four-color, base-by-base DNA sequencing by FSCE through the use of a chemically synthesized drag-tag. These results show that high-molar mass, chemically synthesized drag-tags based on the polyNMEG structure, if obtained in monodisperse preparation, would serve as ideal drag-tags and could help FSCE reach the commercially relevant read lengths of 100 bases or more.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app