Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The pathophysiologic role of the protein kinase Cδ pathway in the intervertebral discs of rabbits and mice: in vitro, ex vivo, and in vivo studies.

OBJECTIVE: Protein kinase Cδ (PKCδ) activation has been shown to be a principal rate-limiting step in matrix-degrading enzyme production in human articular chondrocytes. The aim of this study was to assess the role of the PKC pathways, specifically PKCδ, in intervertebral disc tissue homeostasis.

METHODS: Using in vitro, ex vivo, and in vivo techniques, we evaluated the pathophysiologic role of the PKCδ pathway by examining 1) proteoglycan deposition, 2) matrix-degrading enzyme production and activity, 3) downstream signaling pathways regulated by PKCδ, and 4) the effect on in vivo models of disc degeneration in genetically engineered PKCδ-knockout mice.

RESULTS: Studies of pathway-specific inhibitors revealed a vital role of the PKCδ/MAPK (ERK, p38, JNK) axis and NF-κB in disc homeostasis. Accordingly, in an in vivo model of disc injury, PKCδ-knockout mice were markedly resistant to disc degeneration.

CONCLUSION: Suppression of the PKCδ pathway may be beneficial in the prevention and/or treatment of disc degeneration. The results of this study provide evidence for a potential therapeutic role of pathway-specific inhibitors of the PKCδ cascade in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app