Add like
Add dislike
Add to saved papers

Rate-limiting step of the Rh-catalyzed carboacylation of alkenes: C-C bond activation or migratory insertion?

Rhodium-catalyzed intramolecular carboacylation of alkenes, achieved using quinolinyl ketones containing tethered alkenes, proceeds via the activation and functionalization of a carbon-carbon single bond. This transformation has been demonstrated using RhCl(PPh(3))(3) and [Rh(C(2)H(4))(2)Cl](2) catalysts. Mechanistic investigations of these systems, including determination of the rate law and kinetic isotope effects, were utilized to identify a change in mechanism with substrate. With each catalyst, the transformation occurs via rate-limiting carbon-carbon bond activation for species with minimal alkene substitution, but alkene insertion becomes rate-limiting for more sterically encumbered substrates. Hammett studies and analysis of a series of substituted analogues provide additional insight into the nature of these turnover-limiting elementary steps of catalysis and the relative energies of the carbon-carbon bond activation and alkene insertion steps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app