Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Thermally-mediated ultrasound-induced contraction of equine muscular arteries in vitro and an investigation of the associated cellular mechanisms.

We have previously shown that MHz frequency ultrasound causes contraction of the carotid artery in vitro. We now extend this investigation to equine mesenteric arteries and investigate the cellular mechanisms. In vitro exposure of the large lateral cecal mesenteric artery to 4-min periods of 3.2 MHz continuous wave ultrasound at acoustic powers up to 145 mW induced reversible repeatable contraction. The magnitude of the response was linearly dependent on acoustic power and, at 145 mW, the mean increase in wall stress was 0.020 ± 0.017 mN/mm(2) (n = 34). These results are consistent with our previous study and the effect was hypothesised to be thermally mediated. A 2°C temperature rise produced an increase in intracellular calcium, measured by Fluo-4 fluorescence. Inhibition of the inward-rectifier potassium ion channel with BaCl(2) (4 μM) increased the response to ultrasound by 55% ± 49%, indicating a similar electrophysiologic basis to the response to mild hyperthermia. In small mesenteric arteries (0.5-1.0 mm diameter) mounted in a perfusion myograph, neither ultrasound exposure nor heating produced measureable vasoconstriction or a rise in intracellular calcium and we conclude that temperature-sensitive channels are absent or inactive in these small vessels. It, therefore, appears that response of blood vessels to ultrasound depends not only on the thermal properties of the vessels and surrounding tissues but also on the electrophysiology of the smooth muscle cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app