JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Laminectomy, durotomy, and piotomy effects on spinal cord intramedullary pressure in severe cervical and thoracic kyphotic deformity: a cadaveric study.

OBJECT: Previous studies have shown that cervical and thoracic kyphotic deformity increases spinal cord intramedullary pressure (IMP). Using a cadaveric model, the authors investigated whether posterior decompression can adequately decrease elevated IMP in severe cervical and thoracic kyphotic deformities.

METHODS: Using an established cadaveric model, a kyphotic deformity was created in 16 fresh human cadavers (8 cervical and 8 thoracic). A single-level rostral laminotomy and durotomy were performed to place intraparenchymal pressure monitors in the spinal cord at C-2, C4-5, and C-7 in the cervical study group and at T4-5, T7-8, and T11-12 in the thoracic study group. Intramedullary pressure was recorded at maximal kyphosis. Posterior laminar, dural, and pial decompressions were performed while IMP was monitored. In 2 additional cadavers (1 cervical and 1 thoracic), a kyphotic deformity was created and then corrected.

RESULTS: The creation of the cervical and thoracic kyphotic deformities resulted in significant increases in IMP. The mean increase in cervical and thoracic IMP (change in IMP [ΔIMP]) for all monitored levels was 37.8 ± 7.9 and 46.4 ± 6.4 mm Hg, respectively. After laminectomies were performed, the mean cervical and thoracic IMP was reduced by 22.5% and 18.5%, respectively. After midsagittal durotomies were performed, the mean cervical and thoracic IMP was reduced by 62.8% and 69.9%, respectively. After midsagittal piotomies were performed, the mean cervical and thoracic IMP was reduced by 91.3% and 105.9%, respectively. In 2 cadavers in which a kyphotic deformity was created and then corrected, the ΔIMP increased with the creation of the deformity and returned to zero at all levels when the deformity was corrected.

CONCLUSIONS: In this cadaveric study, laminar decompression reduced ΔIMP by approximately 15%-25%, while correction of the kyphotic deformity returned ΔIMP to zero. This study helps explain the pathophysiology of myelopathy in kyphotic deformity and the failure of laminectomy alone for cervical and thoracic kyphotic deformities with myelopathy. In addition, the study emphasizes the need for correction of deformity during operative treatment of kyphotic deformity, the need for maintaining adequate intraoperative blood pressure during operative treatment, and the higher risk of spinal cord injury associated with operative treatment of kyphotic deformity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app