Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

A parallel method for enumerating amino acid compositions and masses of all theoretical peptides.

BACKGROUND: Enumeration of all theoretically possible amino acid compositions is an important problem in several proteomics workflows, including peptide mass fingerprinting, mass defect labeling, mass defect filtering, and de novo peptide sequencing. Because of the high computational complexity of this task, reported methods for peptide enumeration were restricted to cover limited mass ranges (below 2 kDa). In addition, implementation details of these methods as well as their computational performance have not been provided. The increasing availability of parallel (multi-core) computers in all fields of research makes the development of parallel methods for peptide enumeration a timely topic.

RESULTS: We describe a parallel method for enumerating all amino acid compositions up to a given length. We present recursive procedures which are at the core of the method, and show that a single task of enumeration of all peptide compositions can be divided into smaller subtasks that can be executed in parallel. The computational complexity of the subtasks is compared with the computational complexity of the whole task. Pseudocodes of processes (a master and workers) that are used to execute the enumerating procedure in parallel are given. We present computational times for our method executed on a computer cluster with 12 Intel Xeon X5650 CPUs (72 cores) running Windows HPC Server. Our method has been implemented as a 32- and 64-bit Windows application using Microsoft Visual C++ and the Message Passing Interface. It is available for download at https://ispace.utmb.edu/users/rgsadygo/Proteomics/ParallelMethod.

CONCLUSION: We describe implementation of a parallel method for generating mass distributions of all theoretically possible amino acid compositions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app