Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Role of hydrogen sulfide as a gasotransmitter in modulating contractile activity of circular muscle of rat jejunum.

AIM: Our aim was to determine mechanisms of action of the gasotransmitter hydrogen sulfide (H(2)S) on contractile activity in circular muscle of rat jejunum.

METHODS: Jejunal circular muscle strips were prepared to measure isometric contractions. Effects of sodium hydrosulfide (NaHS), a H(2)S donor, were evaluated on spontaneous contractile activity and after pre-contraction with bethanechol. L-cysteine was evaluated as an endogenous H(2)S donor. We evaluated extrinsic nerves, enteric nervous system, visceral afferent nerves, nitric oxide, K(ATP)+ and K(Ca)+ channels, and myosin light chain phosphatase on action of H(2)S using non-adrenergic/non-cholinergic conditions, tetrodotoxin, capsaicin, L-N(G)-nitro arginine (L-NNA), glibenclamide, apamin, and calyculin A, respectively, and electrical field stimulation (EFS).

RESULTS: NaHS dose-dependently and reversibly inhibited spontaneous and bethanechol-stimulated contractile activity (p < 0.05). L-cysteine had a dose-dependent inhibitory effect. Non-adrenergic/non-cholinergic conditions, tetrodotoxin, capsaicin, L-NNA, or apamin had no effect on contractile inhibition by NaHS; in contrast, low-dose glibenclamide and calyculin A prevented NaHS-induced inhibition. We could not demonstrate H(2)S release by EFS.

CONCLUSIONS: H(2)S inhibits contractile activity of jejunal circular muscle dose-dependently, in part by K(ATP)+ channels and via myosin light chain phosphatase, but not via pathways mediated by the extrinsic or enteric nervous system, visceral afferent nerves, nitric oxide, or K(Ca)+ channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app