CLINICAL TRIAL, PHASE III
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of the immunogenicity of the human papillomavirus (HPV)-16/18 vaccine and the HPV-6/11/16/18 vaccine for oncogenic non-vaccine types HPV-31 and HPV-45 in healthy women aged 18-45 years.

Human Vaccines 2011 December
Protection against oncogenic non-vaccine types (cross-protection) offered by human papillomavirus (HPV) vaccines may provide a significant medical benefit. Available clinical efficacy data suggest the two licensed vaccines (HPV-16/18 vaccine, GlaxoSmithKline Biologicals (GSK), and HPV-6/11/16/18 vaccine, Merck & Co., Inc.) differ in terms of protection against oncogenic non-vaccine HPV types -31/45. The immune responses induced by the two vaccines against these two non-vaccine HPV types (cross-reactivity) was compared in an observer-blind study up to Month 24 (18 mo post-vaccination), in women HPV DNA-negative and seronegative prior to vaccination for the HPV type analyzed (HPV-010 [NCT00423046]). Geometric mean antibody titers (GMTs) measured by pseudovirion-based neutralization assay (PBNA) and enzyme-linked immunosorbent assay (ELISA) were similar between vaccines for HPV-31/45. Seropositivity rates for HPV-31 were also similar between vaccines; however, there was a trend for higher seropositivity with the HPV-16/18 vaccine (13.0-16.7%) versus the HPV-6/11/16/18 vaccine (0.0-5.0%) for HPV-45 with PBNA, but not ELISA. HPV-31/45 cross-reactive memory B-cell responses were comparable between vaccines. Circulating antigen-specific CD4+ T-cell frequencies were higher for the HPV-16/18 vaccine than the HPV-6/11/16/18 vaccine (HPV-31 [geometric mean ratio [GMR] =2.0; p=0.0002] and HPV-45 [GMR=2.6; p=0.0092]), as were the proportion of T-cell responders (HPV-31, p=0.0009; HPV-45, p=0.0793). In conclusion, immune response to oncogenic non-vaccine HPV types -31/45 was generally similar for both vaccines with the exception of T-cell response which was higher with the HPV-16/18 vaccine. Considering the differences in cross-protective efficacy between the two vaccines, the results might provide insights into the underlying mechanism(s) of protection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app