COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Human gene SLC41A1 encodes for the Na+/Mg²+ exchanger.

Magnesium (Mg(2+)), the second most abundant divalent intracellular cation, is involved in the vast majority of intracellular processes, including the synthesis of nucleic acids, proteins, and energy metabolism. The concentration of intracellular free Mg(2+) ([Mg(2+)](i)) in mammalian cells is therefore tightly regulated to its optimum, mainly by an exchange of intracellular Mg(2+) for extracellular Na(+). Despite the importance of this process for cellular Mg(2+) homeostasis, the gene(s) encoding for the functional Na(+)/Mg(2+) exchanger is (are) still unknown. Here, using the fluorescent probe mag-fura 2 to measure [Mg(2+)](i) changes, we examine Mg(2+) extrusion from hSLC41A1-overexpressing human embryonic kidney (HEK)-293 cells. A three- to fourfold elevation of [Mg(2+)](i) was accompanied by a five- to ninefold increase of Mg(2+) efflux. The latter was strictly dependent on extracellular Na(+) and reduced by 91% after complete replacement of Na(+) with N-methyl-d-glucamine. Imipramine and quinidine, known unspecific Na(+)/Mg(2+) exchanger inhibitors, led to a strong 88% to 100% inhibition of hSLC41A1-related Mg(2+) extrusion. In addition, our data show regulation of the transport activity via phosphorylation by cAMP-dependent protein kinase A. As these are the typical characteristics of a Na(+)/Mg(2+) exchanger, we conclude that the human SLC41A1 gene encodes for the Na(+)/Mg(2+) exchanger, the predominant Mg(2+) efflux system. Based on this finding, the analysis of Na(+)/Mg(2+) exchanger regulation and its involvement in the pathogenesis of diseases such as Parkinson's disease and hypertension at the molecular level should now be possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app