Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Optimization using central composite design for antihistamines separation by nonaqueous capillary electrophoresis with electrochemical and electrochemiluminescence detections.

Analyst 2011 December 22
The first detailed examination of non-aqueous capillary electrophoresis with electrochemical and electrochemiluminescence detections (NACE-EC/ECL), separation parameters and their interactions via central composite design was presented. This concept was demonstrated by examining the optimization separation conditions of seven antihistamines (chlorpheniramine, cyproheptadine, diphenhydramine, doxylamine, methapyrilene, terfenadine, and triprolidine) by NACE-EC/ECL. To evaluate the NACE separation quality, the chromatography resolution statistic function (CRS(-1) function) with regard to the resolution and migration time was established as the response variable. The influences of three experimental variables (buffer apparent pH value (pH*), buffer (TBAP) concentration, and separation voltage) on the response were investigated. A set of optimal conditions was obtained from central composite design: 9.2 mM TBAP in ACN (pH* 4.0) and voltage (12.7 kV), and under these optimum conditions, the seven antihistamines could be well separated in less than 10 min. The obtained electropherograms indicated that the dual EC/ECL detection system was indispensable since the six antihistamines (except for triprolidine) displayed both EC and ECL response, whereas triprolidine only displayed the EC response. This work is instructive for investigators in simplifying the NACE-EC/ECL development procedures for multi-component analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app