Add like
Add dislike
Add to saved papers

An abnormally developed embryo of the pill millipede Glomeris marginata that lacks dorsal segmental derivatives.

The body of arthropods is subdivided in serially homologous units, the so-called segments. In many arthropods, ventral and dorsal segmental tissue typically is aligned in parallel, but is dependent on different genetic inputs. In the pill millipede Glomeris marginata (Myriapoda: Diplopoda), ventral and dorsal segmental patterning is clearly decoupled providing an excellent model for the investigation of ventral versus dorsal segmentation mechanisms. This paper reports on the finding of a single embryo that lacks dorsal segmental and extraembryonic tissue. Ventral derivatives, however, are widely developed normally. This suggests that ventral and dorsal tissue is not only patterned differently, as shown previously, but also that ventral tissue can develop (or at least persist) independently from dorsal tissue. It also suggests a correlation of dorsal segmentation and function of the extraembryonic tissue. This assumed correlation may involve the guidance of the two dorsal hemispheres of the developing embryo dorsally, or that formation and/or maintenance of extraembryonic tissue depends on the input of dorsal segmental tissue. Whether the observed abnormalities are caused by mutation or are the result of otherwise disturbed early development is unclear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app