CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The role of asynapsis in human spermatocyte failure.

The basic molecular mechanisms by which chromosomal rearrangements in heterozygous state produce spermatogenic disturbances are poorly understood. Testicular biopsies from five patients - one carrier of a Robertsonian translocation rob t(13;14), two carriers of two different Y-autosome translocations, a t(Y;6) and a t(Y;11), one carrier of a reciprocal translocation t(3;13) and one carrier of a heterochromatin duplication in chromosome 9 - were processed for histopathological analysis, electron microscopy and fluorescent immunolocalization of meiotic proteins. In all the patients, the asynaptic regions during pachytene are labelled by BRCA1 and retained RAD51 foci. The variant histone γ-H2AX is located on the chromatin domains of the asynaptic regions and the XY body. In contrast, these meiotic proteins are absent in those chromosomal segments that are non-homologously synapsed. The present observations on five new cases and a review of recent studies show that the common features shared by all these cases are the abnormal location of some meiotic proteins and the presence of transcriptionally silenced chromatin domains on asynaptic regions. The frequent association of these silenced regions with the XY body and the rescue of spermatocyte viability through non-homologous synapsis are also shared by all these carriers. A passive, random mechanism of clustering of asynaptic regions with the XY body is suggested.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app