Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Altered matrix metalloproteinases and tissue inhibitors of metalloproteinases in embryos from diabetic rats during early organogenesis.

Maternal diabetes increases the risks for embryo malformations. Matrix metalloproteinase-2 (MMP-2) and MMP-9 are two relevant MMPs for embryo development. Here, we addressed whether changes in these MMPs and in tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-2 are altered in embryos and decidua from type 1 diabetic rats during early organogenesis. Our results demonstrate MMP-2 and MMP-9 overactivities and overexpression, together with increases in lipid peroxidation and nitric oxide production in embryos and decidua from diabetic animals. There is a concomitant increase in the inhibitory activity of TIMP-1 and TIMP-2 in embryos and decidua, and an increase in protein expression of embryonic TIMP-1 and TIMP-2. In situ zymography demonstrated MMPs overactivities despite increased TIMPs in embryos and decidua in maternal diabetes during early organogenesis. This study reveals that maternal diabetes leads to profound alterations in MMPs/TIMPs balance during embryo organogenesis, the gestational period during which most malformations are induced.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app