Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lactam-stabilized helical analogues of the analgesic μ-conotoxin KIIIA.

μ-Conotoxin KIIIA (μ-KIIIA) blocks mammalian voltage-gated sodium channels (VGSCs) and is a potent analgesic following systemic administration in mice. Previous structure-activity studies of μ-KIIIA identified a helical pharmacophore for VGSC blockade. This suggested a route for designing truncated analogues of μ-KIIIA by incorporating the key residues into an α-helical scaffold. As (i, i+4) lactam bridges constitute a proven approach for stabilizing α-helices, we designed and synthesized six truncated analogues of μ-KIIIA containing single lactam bridges at various locations. The helicity of these lactam analogues was analyzed by NMR spectroscopy, and their activities were tested against mammalian VGSC subtypes Na(V)1.1 through 1.7. Two of the analogues, Ac-cyclo9/13[Asp9,Lys13]KIIIA7-14 and Ac-cyclo9/13[Lys9,Asp13]KIIIA7-14, displayed μM activity against VGSC subtypes Na(V)1.2 and Na(V)1.6; importantly, the subtype selectivity profile for these peptides matched that of μ-KIIIA. Our study highlights structure-activity relationships within these helical mimetics and provides a basis for the design of additional truncated peptides as potential analgesics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app