JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Organization of bacteriochlorophylls in individual chlorosomes from Chlorobaculum tepidum studied by 2-dimensional polarization fluorescence microscopy.

Chlorosomes are the largest and most efficient natural light-harvesting systems and contain supramolecular assemblies of bacteriochlorophylls that are organized without proteins. Despite a recent structure determination for chlorosomes from Chlorobaculum tepidum (Ganapathy Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8525), the issue of a possible large structural disorder is still discussed controversially. We have studied individual chlorosomes prepared under very carefully controlled growth condition by a novel 2-dimensional polarization single molecule imaging technique giving polarization information for both fluorescence excitation and emission simultaneously. Contrary to the existing literature data, the polarization degree or modulation depth (M) for both excitation (absorption) and emission (fluorescence) showed extremely narrow distributions. The fluorescence was always highly polarized with M ≈ 0.77, independent of the excitation wavelength. Moreover, the fluorescence spectra of individual chlorosomes were identical within the error limits. These results lead us to conclude that all chlorosomes possess the same type of internal organization in terms of the arrangement of the bacteriochlorophyll c transition dipole moments and their total excitonic transition dipole possess a cylindrical symmetry in agreement with the previously suggested concentric multitubular chlorophyll aggregate organization (Ganapathy Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8525).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app