JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production.

Amino Acids 2012 July
N-acetyl-L-glutamate kinase (EC 2.7.2.8) is first committed in the specific L-arginine pathway of Corynebacterium sp. A limited increase of L-arginine production for the argB overexpression in the engineering C. creantum SYPA-CCB strain indicated that L-arginine feedback inhibition plays an influence on the L-arginine production. In this study, we have performed site-directed mutagenesis of the key enzyme (NAGK) and the three mutations (E19R, H26E and H268D) exhibited the increase of I0.5R efficiently. Thereby, the multi-mutated NAGKM3 (including E19R/H26E/H268D) was generated and its I0.5R of L-arginine of the mutant was increased remarkably, whereas the NAGK enzyme activities did not declined. To get a feedback-resistant and robust L-arginine producer, the engineered strains SYPA-CCBM3 were constructed. Introducing the argBM3 gene enabled the NAGK enzyme activity insensitive to the intracellular arginine concentrations resulted in an enhanced arginine biosynthesis flux and decreased formation of by-products. The L-arginine synthesis was largely enhanced due to the overexpression of the argBM3, which is resistant to feedback resistant by L-arginine. Thus L-arginine production could reach 45.6 g/l, about 41.7% higher compared with the initial strain. This is an example of up-modulation of the flux through the L-arginine metabolic pathway by deregulating the key enzyme of the pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app