Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride.

1,2-Dichloroethane (1,2-DCA) is a raw material used for the manufacture of vinyl chloride monomer (VCM) and therefore has very often been detected in the groundwater nearby the VCM manufacturing plant. Zero-valent iron (ZVI) is capable of degrading a wide array of highly chlorinated contaminants; however, the reactivity of ZVI towards 1,2-DCA is very low. In this study, zero-valent copper nanoparticles have been synthesized for effective dechlorination of 1,2-DCA under reduction conditions of sodium borohydride. Copper nanoparticles consisted of mainly metallic copper (Cu(0)) with small amounts of cuprous oxide (Cu(2)O). They have surface areas of about 19.0 m(2) g(-1) and an average diameter of 15 nm. Batch experiments were conducted to test the effectiveness of copper nanoparticles for 1,2-DCA degradation using sodium borohydride as electron donors where the ORP was measured as -1100 mV. More than 80% of 1,2-DCA (30 mg L(-1)) was rapidly degraded within 2 h in the presence of both copper nanoparticles (2.5 g L(-1)) and borohydride (25 mM). No reduction of 1,2-DCA was observed when the system contained either copper nanoparticles alone or borohydride alone. The degradation intermediates included ethane and ethylene accounting for 79% and ∼1.5% of the 1,2-DCA lost, respectively. Potential environmental applications can be achieved by immobilizing copper nanoparticles onto the surface of reducing metals to form a reactive bimetallic structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app