Add like
Add dislike
Add to saved papers

Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis.

Bioinformatics 2011 October 2
MOTIVATION: Reverse engineering gene regulatory networks, especially large size networks from time series gene expression data, remain a challenge to the systems biology community. In this article, a new hybrid algorithm integrating ordinary differential equation models with dynamic Bayesian network analysis, called Differential Equation-based Local Dynamic Bayesian Network (DELDBN), was proposed and implemented for gene regulatory network inference.

RESULTS: The performance of DELDBN was benchmarked with an in vivo dataset from yeast. DELDBN significantly improved the accuracy and sensitivity of network inference compared with other approaches. The local causal discovery algorithm implemented in DELDBN also reduced the complexity of the network inference algorithm and improved its scalability to infer larger networks. We have demonstrated the applicability of the approach to a network containing thousands of genes with a dataset from human HeLa cell time series experiments. The local network around BRCA1 was particularly investigated and validated with independent published studies. BRAC1 network was significantly enriched with the known BRCA1-relevant interactions, indicating that DELDBN can effectively infer large size gene regulatory network from time series data.

AVAILABILITY: The R scripts are provided in File 3 in Supplementary Material.

CONTACT: [email protected]; [email protected]

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app