Add like
Add dislike
Add to saved papers

Identification of an integrated mathematical model of standard oral glucose tolerance test for characterization of insulin potentiation in health.

Two new formulations, respectively denominated INT_M1 and INT_M2, of an integrated mathematical model to describe the glycemic and insulinemic responses to a 75 g oral glucose tolerance test (OGTT) are proposed and compared. The INT_M1 assumes a single compartment for the intestine and the derivative of a power exponential function for the gastric emptying rate, while, in the INT_M2, a nonlinear three-compartment system model is adopted to produce a more realistic, multiphase gastric emptying rate. Both models were implemented in a Matlab-based, two-step procedure for estimation of seven adjustable coefficients characterizing the gastric emptying rate and the incretin, insulin and glucose kinetics. Model behaviour was tested vs. mean plasma glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), glucose and insulin measurements from two different laboratories, where glycemic profiles observed during a 75 g OGTT were matched in healthy subjects (HC1- and HC2-group, respectively) by means of an isoglycemic intravenous glucose (I-IVG) infusion. Under the hypothesis of an additive effect of GLP-1 and GIP on insulin potentiation, our results demonstrated a substantial equivalence of the two models in matching the data. Model parameter estimates showed to be suitable markers of differences observed in the OGTT and matched I-IVG responses from the HC1-group compared to the HC2-group. Model implementation in our two-step parameter estimation procedure enhances the possibility of a prospective application for individualization of the incretin effect in a single subject, when his/her data are plugged in.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app