Journal Article
Research Support, N.I.H., Extramural
Retracted Publication
Add like
Add dislike
Add to saved papers

S-nitrosoglutathione supplementation to ovalbumin-sensitized and -challenged mice ameliorates methacholine-induced bronchoconstriction.

S-nitrosoglutathione (GSNO) is an endogenous bronchodilator present in micromolar concentrations in airway lining fluid. Airway GSNO levels decrease in severe respiratory failure and asthma, which is attributable to increased metabolism by GSNO reductase (GSNOR). Indeed, we have found that GSNOR expression and activity correlate inversely with lung S-nitrosothiol (SNO) content and airway hyperresponsiveness (AHR) to methacholine (MCh) challenge in humans with asthmatic phenotypes (Que LG, Yang Z, Stamler JS, Lugogo NL, Kraft M. Am J Respir Crit Care Med 180: 226-231, 2009). Accordingly, we hypothesized that local aerosol delivery of GSNO could ameliorate AHR and inflammation in the ovalbumin-sensitized and -challenged (OVA) mouse model of allergic asthma. Anesthetized, paralyzed, and tracheotomized 6-wk-old male control and OVA C57BL/6 mice were administered a single 15-s treatment of 0-100 mM GSNO. Five minutes later, airway resistance to MCh was measured and SNOs were quantified in bronchoalveolar lavage (BAL). Duration of protection was evaluated following nose-only exposure to 10 mM GSNO for 10 min followed by measurements of airway resistance, inflammatory cells, and cytokines and chemokines at up to 4 h later. Acute delivery of GSNO aerosol protected OVA mice from MCh-induced AHR, with no benefit seen above 20 mM GSNO. The antibronchoconstrictive effects of GSNO aerosol delivered via nose cone were sustained for at least 4 h. However, administration of GSNO did not alter total BAL cell counts or cell differentials and had modest effects on cytokine and chemokine levels. In conclusion, in the OVA mouse model of allergic asthma, aerosolized GSNO has rapid and sustained antibronchoconstrictive effects but does not substantially alter airway inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app