JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

4D flow CMR in assessment of valve-related ascending aortic disease.

Blood flow imaging with 3-dimensional time-resolved, phase-contrast cardiac magnetic resonance (4-dimensional [4D] Flow) is an innovative and visually appealing method for studying cardiovascular disease that allows quantification of important secondary vascular parameters including wall shear stress. The hypothesis of this pilot study is that 4D Flow will become a powerful tool for characterizing the relationship of aortic valve-related flow dynamics, especially with bicuspid aortic valve (BAV), and progression of ascending aortic (AsAo) dilation. We identified 46 patients previously studied with 4D Flow: tricuspid aortic valve patients without valvular disease (n = 20), and BAV patients with either normal flow (n = 7) or eccentric systolic jets resulting in abnormal right-handed helical AsAo flow (n = 19). The subgroup of patients with BAV and eccentric systolic AsAo blood flow was found to have significantly and asymmetrically elevated wall shear stress. This increased hemodynamic burden may place them at risk for AsAo aneurysm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app