Add like
Add dislike
Add to saved papers

Protective role of normothermic, hyperthermic and estrogen preconditioning and pretreatment on tumour necrosis factor-alpha-induced damage.

BACKGROUND: Tumour necrosis factor-alpha (TNF-α) has been reported to play an important role in ischemia reperfusion injury and ischemic preconditioning (IPC). However, its role is not completely understood. Recently, normothermic IPC (NIPC), hyperthermic IPC (HIPC), preconditioning (PC) with 17-beta estradiol (estrogen, E2) and E2 pretreatment were proven to be effective in reducing ischemia reperfusion injury.

OBJECTIVES: To investigate the detrimental effects of TNF-α on the heart, and the protective effects of NIPC, HIPC, E2 PC and pretreatment on TNF-α-induced injury.

METHODS: A Langendorff-perfused rat heart model was used for the present study. Hearts isolated from male rats were studied under eight different conditions (n=5 each): negative control; control treated with TNF-α without any further treatment; NIPC (preconditioned at 37°C); HIPC (preconditioned at 42°C); E2 PC; E2 pretreatment; normal, untreated hearts plus E2; or pretreated hearts perfused for 60 min with TNF-α and an E2-containing buffer.

RESULTS: TNF-α treatment resulted in deterioration of heart function. HIPC offered better protection by significantly increasing left ventricular developed pressure (Pmax) and coronary flow (P<0.01), and by decreasing left ventricular end-diastolic pressure (P<0.01). NIPC or pretreatment of the hearts with E2 normalized left ventricular end-diastolic pressure, coronary flow and coronary vascular resistance (P<0.001); however, it did not normalize Pmax. The combination of E2 and HIPC did not show any synergetic protection; however, the addition of HIPC normalized Pmax (P<0.001).

CONCLUSIONS: TNF-α treatment resulted in deterioration of heart hemodynamics, which were reversed by HIPC, E2 PC and pretreatment. The combination of these treatments did not add to the previously observed protection compared with when they were used individually.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app