Add like
Add dislike
Add to saved papers

Dexamethasone increases the phosphorylation of nephrin in cultured podocytes.

BACKGROUND: We reported that nephrin is phosphorylated at Y1204 and Y1228 under normal conditions and that the phosphorylation is decreased in puromycin nephrosis and in human minimal change nephrosis. These results indicate that the phosphorylation of nephrin is important for maintaining normal podocyte function. However, little is known about the regulation of nephrin phosphorylation. Here, we investigated whether glucocorticoid, a drug used to treat glomerular diseases with proteinuria, might affect the phosphorylation of nephrin.

METHODS: Human cultured podocytes transiently expressing human nephrin were treated with dexamethasone (Dex), and the phosphorylation of nephrin was determined by immunoblot with the anti-pY1228 antibody.

RESULTS: Dex treatment for 24 h increased the phosphorylation of nephrin; this increased phosphorylation was inhibited by the glucocorticoid receptor antagonist but not by the mineral corticoid receptor antagonist. A shorter incubation time (30 min) did not increase the phosphorylation, and actinomycin D and cycloheximide treatments abolished the increased phosphorylation. The activation of Src-family kinases was correlated with nephrin phosphorylation, both of which were abolished by small interfering RNA (siRNA) treatment for serum/glucocorticoid-induced kinase 1 (SGK1).

CONCLUSIONS: These results clarify a novel action of glucocorticoid on nephrin phosphorylation through SGK1. Glucocorticoid treatment for human glomerulonephritis may exert its function by regulating the phosphorylation of nephrin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app