Add like
Add dislike
Add to saved papers

Ypt31/32 GTPases and their F-Box effector Rcy1 regulate ubiquitination of recycling proteins.

Cellular Logistics 2011 January
Ypt/Rab GTPases are conserved molecular switches that regulate the different steps of intracellular trafficking pathways. In yeast, the Ypt31/32 GTPases are required for exit from the trans-Golgi and for recycling from the plasma membrane (PM), through early endosomes, to the Golgi. We have previously shown that the recycling function of Ypt31/32 is mediated by an effector called Rcy1. Specifically, both Ypt31/32 and Rcy1 are required for recycling the vSNARE Snc1. Rcy1 contains an F-box domain shared by proteins that act in substrate recognition of ubiquitin ligases. Here, we show that both Ypt31/32 and Rcy1 are important for Snc1 ubiquitination and that such ubiquitination plays a role in Snc1 recycling. Direct interaction between Rcy1 and Snc1 was demonstrated using two independent approaches. In vitro interaction was observed using co-precipitation of recombinant proteins, whereas interaction in yeast cells was observed using bimolecular fluorescence complementation. Ubiquitination of Snc1 in vivo at the K63 position was previously shown in a proteomic study. We show that the Snc1-K63R mutant protein is less ubquitinated than wild-type Snc1 and is defective in endosome-to-Golgi transport. Additionally, wild-type Snc1 is ubiquitinated to a lesser extent in ypt31/32ts and rcy1Δ mutant cells and Snc1 recycling is also blocked in endosomes in these mutants. Therefore, ubiquitination plays a role in the recycling of Snc1 from the PM to the Golgi, and Ypt31/32 and Rcy1 regulate this ubiquitination. Together, these results suggest a new role for ubiquitination in cargo recycling. Moreover, we propose that Ypt/Rabs integrate intra-cellular trafficking with ubiquitination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app