Add like
Add dislike
Add to saved papers

Impact of pressure and gas type on adhesion formation and biomaterial integration in laparoscopy.

Surgical Endoscopy 2011 November
BACKGROUND: Laparoscopic mesh repair of inguinal and incisional hernias has been widely adopted. Nevertheless, knowledge about the impact of pneumoperitoneum on mesh integration is rare. The present study investigates pressure and gas-dependent effects of pneumoperitoneum on adhesion formation and biomaterial integration in a standardized animal model.

METHODS: Laparoscopic intraperitoneal onlay mesh implantation (IPOM) was performed in 32 female chinchilla rabbits using CO(2) or helium for pneumoperitoneum. Intra-abdominal pressures were 3 or 6 mmHg. Animals were killed after 21 days, and the abdominal wall was explanted for subsequent histopathological examinations. Adhesions were assessed qualitatively with a scoring system, and the adhesion surface was analyzed semiquantitatively by planimetry. Infiltration of macrophages (CD68), expression of matrix metalloproteinase 13 (MMP-13), and cell proliferation (Ki67) were analyzed at the mesh to host interface by immunohistochemistry. The collagen type I/III ratio was analyzed by cross-polarization microscopy to determine the quality of mesh integration.

RESULTS: After 21 days, perifilamental infiltration with macrophages (CD68) and percentage of proliferating cells (Ki67) were highest after 6 mmHg of CO(2) pneumoperitoneum. The extent of adhesions, as well as the expression of MMP-13 and the collagen type I/III ratio, were similar between groups.

CONCLUSIONS: Our experiments showed no pressure or gas-dependent alterations of adhesion formation and only minor effects on biomaterial integration. Altogether, there is no evidence for a clinically negative effect of CO(2) pneumoperitoneum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app