Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chronic phencyclidine (PCP)-induced modulation of muscarinic receptor mRNAs in rat brain: impact of antipsychotic drug treatment.

Many antipsychotics (APDs) have a high affinity for muscarinic receptors, which is thought to contribute to their therapeutic efficacy, or side effect profile. In order to define how muscarinic receptor gene expression is affected by atypical or typical APDs, rats were treated with chronic (2.58 mg/kg) PCP (a psychotomimetic) or vehicle, plus clozapine (20 mg/kg/day) or haloperidol (1 mg/kg/day), and M1, M2 and M3 receptor mRNA levels were determined in brain sections. Negligible changes in M2 or M3 muscarinic mRNA were detected in any region after clozapine or haloperidol. Chronic PCP administration increased M1 mRNA expression in the prefrontal cortex, which was not reversed by either chronic clozapine or haloperidol treatment. Chronic clozapine treatment in combination with PCP treatment decreased M1 receptor mRNA levels in the nucleus accumbens core, whereas chronic haloperidol in combination with PCP treatment increased M1 receptor mRNA levels in the ventromedial hypothalamus and medial amygdala. Thus M1 receptor gene expression is targeted by APDs, although the regions affected differ according to the APD treatment and whether PCP has been administered. The different brain circuitry modulated, may reflect the differing modes of action of typical and atypical APDs. These data provide support for the dysregulation of M1 receptors in schizophrenia, and furthermore, modulation by antipsychotic agents in the treatment of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app