COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes.

Biochemistry 1990 May 2
Rotational diffusion of androstane spin-label (ASL), a sterol analogue, in various phosphatidylcholine (PC)-cholesterol membranes was systematically studied by computer simulation of steady-state ESR spectra as a function of the chain length and unsaturation of the alkyl chains, cholesterol mole fraction, and temperature for a better understanding of phospholipid-cholesterol and cholesterol-cholesterol interactions. Special attention was paid to the differences in the cholesterol effects on ASL motion between saturated and unsaturated PC membranes. ASL motion in the membrane was treated as Brownian rotational diffusion of a rigid rod within the confines of a cone imposed by the membrane environment. The wobbling rotational diffusion constant of the long axis, its activation energy, and the cone angle of the confines were obtained for various PC-cholesterol membranes in the liquid-crystalline phase. Cholesterol decreases both the cone angle and the wobbling rotational diffusion constant for ASL in all PC membranes studied in this work. The cholesterol effects are the largest in DMPC membranes. An increase of cholesterol mole fraction from 0 to 30% decreases the rotational diffusion constant by a factor of 9-15 (depending on temperature) and the cone angle by a factor of about 2. In dioleoyl-PC membranes, addition of 30 mol % cholesterol reduces both the rotational diffusion constant and the cone angle of ASL by factors of approximately 2.5 and approximately 1.3, respectively, while it was previously found to cause only modest effects on the motional freedom of phospholipid analogue spin probes [Kusumi, A., Subczynski, W. K., Pasenkiewicz-Gierula, M., Hyde, J. S., & Merkle, H. (1986) Biochim. Biophys. Acta 854, 307-317]. It is proposed that fluid-phase microimmiscibility takes place in dioleoyl-PC-cholesterol membranes at physiological temperatures, which induces cholesterol-rich domains in the membrane, partially due to the steric nonconformability between the rigid fused-ring structure of cholesterol and the 30 degrees bend at the C9-C10 cis double bond of the alkyl chains of dioleoyl-PC. The mechanism by which cholesterol influences the lipid dynamics in the membrane is different between saturated and unsaturated PC membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app