Add like
Add dislike
Add to saved papers

TCAT Analysis of Capillary Pressure in Non-equilibrium, Two-fluid-phase, Porous Medium Systems.

Standard models of flow of two immiscible fluids in a porous medium make use of an expression for the dependence of capillary pressure on the saturation of a fluid phase. Data to support the mathematical expression is most often obtained through a sequence of equilibrium experiments. In addition to such expressions being hysteretic, recent experimental and theoretical studies have suggested that the equilibrium functional forms obtained may be inadequate for modeling dynamic systems. This situation has led to efforts to express relaxation of a system to an equilibrium capillary pressure in relation to the rate of change of saturation. Here, based on insights gained from the thermodynamically constrained averaging theory (TCAT) we propose that dynamic processes are related to changes in interfacial area between phases as well as saturation. A more complete formulation of capillary pressure dynamics is presented leading to an equation that is suitable for experimental study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app