JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Association of Rex-1 to target genes supports its interaction with Polycomb function.

Rex-1/Zfp42 displays a remarkably restricted pattern of expression in preimplantation embryos, primary spermatocytes, and undifferentiated mouse embryonic stem (ES) cells and is frequently used as a marker gene for pluripotent stem cells. To understand the role of Rex-1 in selfrenewal and pluripotency, we used Rex-1 association as a measure to identify potential target genes, and carried out chromatin-immunoprecipitation assays in combination with gene specific primers to identify genomic targets Rex-1 associates with. We find association of Rex-1 to several genes described previously as bivalently marked regulators of differentiation and development, whose repression in mouse embryonic stem (ES) cells is Polycomb Group-mediated, and controlled directly by Ring1A/B. To substantiate the hypothesis that Rex-1 contributes to gene regulation by PcG, we demonstrate interactions of Rex-1 and YY2 (a close relative of YY1) with Ring1 proteins and the PcG-associated proteins RYBP and YAF2, in line with interactions reported previously for YY1. We also demonstrate the presence of Rex-1 protein in both trophectoderm and Inner Cell Mass of the mouse blastocyst and in both ES and in trophectoderm stem (TS) cells. In TS cells, we were unable to demonstrate association of Rex-1 to the genes it associates with in ES cells, suggesting that association may be cell-type specific. Rex-1 might fine-tune pluripotency in ES cells by modulating Polycomb-mediated gene regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app