Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Modulation of RXR function through ligand design.

As the promiscuous partner of heterodimeric associations, retinoid X receptors (RXRs) play a key role within the Nuclear Receptor (NR) superfamily. Some of the heterodimers (PPAR/RXR, LXR/RXR, FXR/RXR) are "permissive" as they become transcriptionally active in the sole presence of either an RXR-selective ligand ("rexinoid") or a NR partner ligand. In contrast, "non-permissive" heterodimers (including RAR/RXR, VDR/RXR and TR/RXR) are unresponsive to rexinoids alone but these agonists superactivate transcription by synergizing with partner agonists. Despite their promiscuity in heterodimer formation and activation of multiple pathways, RXR is a target for drug discovery. Indeed, a rexinoid is used in the clinic for the treatment of cutaneous T-cell lymphoma. In addition to cancer RXR modulators hold therapeutical potential for the treatment of metabolic diseases. The modulation potential of the rexinoid (as agonist or antagonist ligand) is dictated by the precise conformation of the ligand-receptor complexes and the nature and extent of their interaction with co-regulators, which determine the specific physiological responses through transcription modulation of cognate gene networks. Notwithstanding the advances in this field, it is not yet possible to predict the correlation between ligand structure and physiological response. We will focus on this review on the modulation of PPARγ/RXR and LXR/RXR heterodimer activities by rexinoids. The genetic and pharmacological data from animal models of insulin resistance, diabetes and obesity demonstrate that RXR agonists and antagonists have promise as anti-obesity agents. However, the treatment with rexinoids raises triglycerides levels, suppresses the thyroid hormone axis, and induces hepatomegaly, which has complicated the development of these compounds as therapeutic agents for the treatment of type 2 diabetes and insulin resistance. The discovery of PPARγ/RXR and LXR/RXR heterodimer-selective rexinoids, which act differently than PPARγ or LXR agonists, might overcome some of these limitations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app