JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

'Biasing' the parathyroid hormone receptor: a novel anabolic approach to increasing bone mass?

'Functional selectivity' refers to the ability of a ligand to activate and/or inhibit only a subset of the signals capable of emanating from its cognate G-protein-coupled receptor (GPCR). Whereas conventional GPCR agonism and antagonism can be viewed as modulating the quantity of efficacy, functionally selective or 'biased' ligands qualitatively change the nature of information flow across the plasma membrane, raising the prospect of drugs with improved therapeutic efficacy or reduced side effects. Nonetheless, there is little experimental evidence that biased ligands offer advantages over conventional agonists/antagonists in vivo. Recent work with the type I parathyroid hormone receptor (PTH(1) R) suggests that biased ligands that selectively activate G-protein-independent arrestin-mediated signalling pathways may hold promise in the treatment of osteoporosis. Parathyroid hormone (PTH) is a principle regulator of bone and calcium metabolism. In bone, PTH exerts complex effects; promoting new bone formation through direct actions on osteoblasts while simultaneously stimulating bone loss through indirect activation of osteoclastic bone resorption. Although the conventional PTH(1) R agonist teriparatide, PTH(1-34), is effective in the treatment of osteoporosis, its utility is limited by its bone-resorptive effects and propensity to promote hypercalcaemia/hypercalcuria. In contrast, d-Trp(12) ,Tyr(34) -bPTH(7-34) (PTH-βarr), an arrestin pathway-selective agonist for the PTH(1) R, induces anabolic bone formation independent of classic G-protein-coupled signalling mechanisms. Unlike PTH(1-34), PTH-βarr appears to 'uncouple' the anabolic effects of PTH(1) R activation from its catabolic and calcitropic effects. Such findings offer evidence that arrestin pathway-selective GPCR agonists can elicit potentially beneficial effects in vivo that cannot be achieved using conventional agonist or antagonist ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app