Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of a vessel-mimicking material for use in anatomically realistic Doppler flow phantoms.

Polyvinyl alcohol cryogel (PVA-C) is presented as a vessel-mimicking material for use in anatomically realistic Doppler flow phantoms. Three different batches of 10% wt PVA-C containing (i) PVA-C alone, (ii) PVA-C with antibacterial agent and (iii) PVA-C with silicon carbide particles were produced, each with 1-6 freeze-thaw cycles. The resulting PVA-C samples were characterized acoustically (over a range 2.65 to 10.5 MHz) and mechanically to determine the optimum mixture and preparation for mimicking the properties of healthy and diseased arteries found in vivo. This optimum mix was reached with the PVA-C with antibacterial agent sample, prepared after two freeze/thaw cycles, which achieved a speed of sound of 1538 ± 5 m s(-1) and a Young's elastic modulus of 79 ± 11 kPa. This material was used to make a range of anatomically realistic flow phantoms with varying degrees of stenoses, and subsequent flow experiments revealed that higher degrees of stenoses and higher velocities could be achieved without phantom rupturing compared with a phantom containing conventional wall-less vessels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app