Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Potent 5-nitrofuran derivatives inhibitors of Trypanosoma cruzi growth: electrochemical, spectroscopic and biological studies.

Cyclic voltammetry and electron spin resonance techniques were used in the investigation of several potential antiprotozoal containing thiosemicarbazone and carbamate nitrofurans. In the electrochemical behaviour, a self-protonation process involving the nitro group was observed. The reactivity of the nitro anion radical for these derivatives with glutathione, a biological relevant thiol, was also studied in means of cyclic voltammetry. These studies demonstrated that glutathione could react with radical species from 5-nitrofuryl system. Furthermore, from the voltammetric results, some parameters of biological significance as E(7)(1) (indicative of the biological nitro anion radical formation), and [Formula: see text] (thermodynamic indicator the of oxygen redox cycling) have been calculated. We also evaluated the stability of the nitro anion radical in terms of the dimerization constant (k(d)). The nitrofuran-free radicals from cyclic voltammetry were characterized by electron spin resonance. A clear dependence between both the thiosemicarbazone or carbamate substructure and the length of the linker, furyl- or furylpropenyl-spacer, and the delocalization of the unpaired electron was observed. Through of biological assays we obtained important parameters that account for the selective anti-trypanosomal activity of these derivatives. The trypomastigote viability study showed that all derivatives are as active as in the epimastigote form of the parasite in a doses dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app