Add like
Add dislike
Add to saved papers

Dynamics of insulin action in hypertension: assessment from minimal model interpretation of intravenous glucose tolerance test data.

Based on glucose kinetics minimal model (GKMM) interpretation of frequently sampled intravenous glucose tolerance test (FSIGTT), the aim was to broaden the characterization of insulin-mediated glucose disposal in hypertension by aid of a dynamic insulin sensitivity index, S(D)(I), and the related efficiency, η = S(D)(I) / S(I), of the metabolic system to convert the maximal individual response capacity, measured by S (I), into an effective insulin control on glucose. The C-peptide minimal model (CPMM) was used to interpret the role of β-cell function. Plasma glucose, insulin, and C-peptide concentrations were measured, during a 5-h FSIGTT, in eighteen normoglycemic individuals: ten hypertensive patients (H-group) and eight normotensive subjects (N-group) with no metabolic syndrome. Compared to our N-group, the H-group showed a significant (P < 0.05) reduction of both S(I) (56%) and S(D)(I) (50%), no significant change of η, a significant increase of both the first-phase β-cell responsiveness to glucose (105%) and total insulin secretion (55%), and no significant change in disposition indexes, defined as the product of insulin sensitivity (either S(I) and S(D)(I)) and β-cell responsiveness. These findings suggest that, in spite of no change of efficiency, insulin resistance in normoglycemic hypertensive patients is primarily compensated by an increase in first-phase insulin secretion to preserve glucose tolerance to intravenous glucose load.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app