Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spinal involvement and muscle cramps in electrically elicited muscle contractions.

Electrical stimulation of innervated muscles has been investigated for many decades with alternations of high and low clinical interest in the fields of rehabilitation medicine and sports sciences. Early work demonstrated that afferent fibers have lower thresholds and are usually activated first (therefore eliciting an H-reflex). In the case of nerve trunk stimulation, the order of recruitment is mostly conditioned by the axonal dimension and excitability threshold. In the case of muscle motor point stimulation, the spatial distribution of nerve branches plays a predominant role. Sustained stimulation produces a progressive increase of force that is often maintained in subsequent voluntary activation by stroke patients. This observation suggested a facilitation mechanism at the spinal and/or supraspinal level. Such facilitation has been observed in healthy subjects as well, and may explain the generation of cramps elicited during stimulation and sustained for dozens of seconds after the stimulation has been interrupted. The most recent interpretations of facilitation resulting from peripheral stimulation focused on presynaptic (potentiation of neurotransmitter release from afferent fibers) or postsynaptic (generation of "persistent inward currents" in spinal motor neurons or interneurons) mechanisms. The renewed attention to these phenomena is once more increasing the interest toward electrical stimulation of the neuromuscular system. This is an opportunity for a structured investigation of the field aimed to resolving elements of confusion and controversy that still plague this area of electrophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app