JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hydrogen sulphide inhibits carbachol-induced contractile responses in β-escin permeabilized guinea-pig taenia caecum.

Hydrogen sulphide (H(2)S) is an endogenous mediator producing a potent relaxation response in vascular and non-vascular smooth muscles. While ATP-sensitive potassium channels are mainly involved in this relaxant effect in vascular smooth muscle, the mechanism in other smooth muscles has not been revealed yet. In the present study, we investigated how H(2)S relaxes non-vascular smooth muscle by using intact and β-escin permeabilized guinea-pig taenia caecum. In intact tissues, concentration-dependent relaxation response to H(2)S donor NaHS in carbachol-precontracted preparations did not change in the presence of a K(ATP) channel blocker glibenclamide, adenylate cyclase inhibitor SQ-22536, guanylate cyclase inhibitor ODQ, protein kinase A inhibitor KT-5720, protein kinase C inhibitor H-7, tetrodotoxin, apamin/charybdotoxin, NOS inhibitor L-NAME and cyclooxygenase inhibitor indomethacin. We then studied how H(2)S affected carbachol- or Ca(2+)-induced contractions in permeabilized tissues. When Ca(2+) was clamped to a constant value (pCa6), a further contraction could be elicited by carbachol that was decreased by NaHS. This decrease in contraction was reversed by catalase but not by superoxide dismutase or N-acetyl cysteine. The sarcoplasmic reticulum Ca(2+)-ATPase pump inhibitor, cyclopiazonic acid, also decreased the carbachol-induced contraction that was further inhibited by NaHS. Mitochondrial proton pump inhibitor carbonyl cyanide p-trifluromethoxyphenylhydrazone also decreased the carbachol-induced contraction but this was not additionally changed by NaHS. The carbachol-induced Ca(2+) sensitization, calcium concentration-response curves, IP(3)- and caffeine-induced contractions were not affected by NaHS. In conclusion, we propose that hydrogen peroxide and mitochondria may have a role in H(2)S-induced relaxation response in taenia caecum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app