Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

From molecule to man: integrating molecular biology with whole organ physiology in studying respiratory disease.

Chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) are all characterized by structural changes of the airways and/or lungs that limit airflow and/or gas exchange. Currently, there is no therapy available that adequately targets the structural remodeling of the airways and lungs in these diseases. This underscores the great need for insight into the mechanisms that underpin the development of airway remodeling, fibrosis and emphysema in these diseases, in order to identify suitable drug targets. It is increasingly evident that structural cell-cell communication within the lung is central to the development of remodeling, indicating that a more integrative approach should be considered when studying molecular and cellular mechanisms of remodeling. Therefore, there is a great need to study molecular and cellular physiological and pathophysiological mechanisms in as much detail as possible, but with as little as possible loss of the physiological context. Here, we will review the use of models such as cellular co-culture, tissue culture, and lung slice culture, in which cell-cell communication and tissue architecture are better preserved or mimicked than in cell culture, and zoom in on the usefulness of molecular and cellular biological tools in these complex model systems to read out or control signaling and gene/protein regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app