Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparing the potential renal protective activity of desferrioxamine B and the novel chelator desferrioxamine B-N-(3-hydroxyadamant-1-yl)carboxamide in a cell model of myoglobinuria.

Accumulating Mb (myoglobin) in the kidney following severe burns promotes oxidative damage and inflammation, which leads to acute renal failure. The potential for haem-iron to induce oxidative damage has prompted testing of iron chelators [e.g. DFOB (desferrioxamine B)] as renal protective agents. We compared the ability of DFOB and a DFOB-derivative {DFOB-AdAOH [DFOB-N-(3-hydroxyadamant-1-yl)carboxamide]} to protect renal epithelial cells from Mb insult. Loading kidney-tubule epithelial cells with dihydrorhodamine-123 before exposure to 100 μM Mb increased rhodamine-123 fluorescence relative to controls (absence of Mb), indicating increased oxidative stress. Extracellular Mb elicited a reorganization of the transferrin receptor as assessed by monitoring labelled transferrin uptake with flow cytometry and inverted fluorescence microscopy. Mb stimulated HO-1 (haem oxygenase-1), TNFα (tumour necrosis factor α), and both ICAM (intercellular adhesion molecule) and VCAM (vascular cell adhesion molecule) gene expression and inhibited epithelial monolayer permeability. Pre-treatment with DFOB or DFOB-AdAOH decreased Mb-mediated rhodamine-123 fluorescence, HO-1, ICAM and TNFα gene expression and restored monolayer permeability. MCP-1 (monocyte chemotactic protein 1) secretion increased in cells exposed to Mb-insult and this was abrogated by DFOB or DFOB-AdAOH. Cells treated with DFOB or DFOB-AdAOH alone showed no change in permeability, MCP-1 secretion or HO-1, TNFα, ICAM or VCAM gene expression. Similarly to DFOB, incubation of DFOB-AdAOH with Mb plus H2O2 yielded nitroxide radicals as detected by EPR spectroscopy, indicating a potential antioxidant activity in addition to metal chelation; Fe(III)-loaded DFOB-AdAOH showed no nitroxide radical formation. Overall, the chelators inhibited Mb-induced oxidative stress and inflammation and improved epithelial cell function. DFOB-AdAOH showed similar activity to DFOB, indicating that this novel low-toxicity chelator may protect the kidney after severe burns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app