JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Drosophila morgue influences cell numbers and positions in the embryonic nervous system.

Morgue is a unique multi-domain protein that contains a zinc finger motif, an F box, and a variant E2 conjugase domain. The presence of these domains suggests potentially complex and novel functions for Morgue in ubiquitination pathways. Morgue was originally identified via its gain-of-function enhancement of eye cell death phenotypes in Drosophila and ectopic expression of Morgue also influences circadian rhythms. However, there is as yet little known about Morgues normal developmental or physiological functions. To address this issue, we generated several morgue loss-of-function mutants via P element excision mutagenesis and analyzed the mutant phenotypes during the fly life cycle. These studies revealed that morgue null mutants are viable, though approximately 10% of the mutants exhibit defects in pupal spiracle eversion and malformations in the adult abdominal cuticle. In addition, a similar subset of morgue mutant embryos exhibited alterations in the normal number, position, or morphology of specific neurons and glia. Analysis of Morgue protein localization was addressed through generation of a transgenic fly strain that expresses a GFP::Morgue fusion protein. Use of this strain revealed Morgue protein localization in multiple cellular compartments, including nuclei, cytoplasm and membranes. Taken together, these diverse phenotypes and distribution patterns suggest pleiotropic functions for Morgue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app