Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structure and function of the perinucleolar compartment in cancer cells.

The perinucleolar compartment (PNC) is a subnuclear body that forms in cancer cells. In vivo analyses using human tumor tissues demonstrate a close correlation between PNC prevalence and disease progress in colorectal carcinoma, and a high PNC prevalence is associated with poor patient outcome. These findings are consistent with previous observations in breast cancer and cancer cell lines in vitro. The PNC is composed of thick strands that form a filamental meshwork often extending into the nucleolus. Although it appears to be electron dense as observed by transmission electron microscopy (TEM), the actual density of the structure imaged by electron spectroscopy is much lower, similar to that of the interchromatin space, and is lined with ribonucleoproteins (RNPs). In situ detections show that the PNC is highly enriched with a subset of small RNAs of polymerase III (Pol III) origins and RNA-binding proteins primarily implicated in pre-mRNA processing. A novel gel-shifting approach demonstrates that the addition of PNC-associated RNAs into HeLa cell lysates increases the mobility of polypyrimidine tract-binding (PTB) protein in a native gel electrophoresis, suggesting an interaction between these RNAs and PTB proteins. On the basis of these and other findings, we propose a working model in which novel RNPs have a key role in regulating gene expression at the PNC in cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app