JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Single-chain antibody fragment production in Pichia pastoris: Benefits of prolonged pre-induction glycerol feeding.

Secretory production of a single-chain antibody fragment (scFv) by recombinant Pichia pastoris using the methanol inducible AOX1 promoter is limited biochemically by retarded secretion, and economically by the high demand for pure oxygen. To address the problem, the adaptation phase with growth-limiting feeding of glycerol before the production phase was optimized. In a standard procedure with a short glycerol-feeding phase before induction, scFv accumulated in the supernatant only after 15 h. Conversely, scFv started to appear immediately in the medium upon methanol induction when the glycerol-feeding phase was extended to 18 h. Interestingly, despite a significantly lower cell density in the cultivation with extended glycerol feeding, the same amount of functional product of 300 mg/L was obtained about 30 h after the start of glycerol feeding with both methods. mRNA analysis revealed that the higher and faster production of the product was related to longer lasting induction of the scFv mRNA. Additional effects of a better adaptation of the secretion machinery may be suggested by higher expression of unfolded protein response-related genes KAR2 and PDI. A clear benefit of the longer glycerol-feeding phase was a 75% reduction of the consumption of both pure oxygen and methanol, and a significantly lower cell density, which would be beneficial for down-stream purification of the product.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app