JOURNAL ARTICLE
MULTICENTER STUDY
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A risk tertiles model for predicting mortality in patients with acute respiratory distress syndrome: age, plateau pressure, and P(aO(2))/F(IO(2)) at ARDS onset can predict mortality.

Respiratory Care 2011 April
BACKGROUND: Predicting mortality has become a necessary step for selecting patients for clinical trials and defining outcomes. We examined whether stratification by tertiles of respiratory and ventilatory variables at the onset of acute respiratory distress syndrome (ARDS) identifies patients with different risks of death in the intensive care unit.

METHODS: We performed a secondary analysis of data from 220 patients included in 2 multicenter prospective independent trials of ARDS patients mechanically ventilated with a lung-protective strategy. Using demographic, pulmonary, and ventilation data collected at ARDS onset, we derived and validated a simple prediction model based on a population-based stratification of variable values into low, middle, and high tertiles. The derivation cohort included 170 patients (all from one trial) and the validation cohort included 50 patients (all from a second trial).

RESULTS: Tertile distribution for age, plateau airway pressure (P(plat)), and P(aO(2))/F(IO(2)) at ARDS onset identified subgroups with different mortalities, particularly for the highest-risk tertiles: age (> 62 years), P(plat) (> 29 cm H(2)O), and P(aO(2))/F(IO(2)) (< 112 mm Hg). Risk was defined by the number of coexisting high-risk tertiles: patients with no high-risk tertiles had a mortality of 12%, whereas patients with 3 high-risk tertiles had 90% mortality (P < .001).

CONCLUSIONS: A prediction model based on tertiles of patient age, P(plat), and P(aO(2))/F(IO(2)) at the time the patient meets ARDS criteria identifies patients with the lowest and highest risk of intensive care unit death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app