Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin.

Melanocortin-4 receptor (MC4R) is critical for energy homeostasis, and the paraventricular nucleus of the hypothalamus (PVN) is a key site of MC4R action. Most studies suggest that leptin regulates PVN neurons indirectly, by binding to receptors in the arcuate nucleus or ventromedial hypothalamus and regulating release of products like α-melanocyte-stimulating hormone (α-MSH), neuropeptide Y (NPY), glutamate, and GABA from first-order neurons onto the MC4R PVN cells. Here, we investigate mechanisms underlying regulation of activity of these neurons under various metabolic states by using hypothalamic slices from a transgenic MC4R-GFP mouse to record directly from MC4R neurons. First, we show that in vivo leptin levels regulate the tonic firing rate of second-order MC4R PVN neurons, with fasting increasing firing frequency in a leptin-dependent manner. We also show that, although leptin inhibits these neurons directly at the postsynaptic membrane, α-MSH and NPY potently stimulate and inhibit the cells, respectively. Thus, in contrast with the conventional model of leptin action, the primary control of MC4R PVN neurons is unlikely to be mediated by leptin action on arcuate NPY/agouti-related protein and proopiomelanocortin neurons. We also show that the activity of MC4R PVN neurons is controlled by the constitutive activity of the MC4R and that expression of the receptor mRNA and α-MSH sensitivity are both stimulated by leptin. Thus, leptin acts multinodally on arcuate nucleus/PVN circuits to regulate energy homeostasis, with prominent mechanisms involving direct control of both membrane conductances and gene expression in the MC4R PVN neuron.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app