Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants.

Eukaryotic organisms have developed diverse mechanisms for the acquisition of iron, which is required for their survival. Graminaceous plants use a chelation strategy. They secrete phytosiderophore compounds, which solubilize iron in the soil, and then take up the resulting iron-phytosiderophore complexes. Bacteria and mammals also secrete siderophores to acquire iron. Although phytosiderophore secretion is crucial for plant growth, its molecular mechanism remains unknown. Here, we show that the efflux of deoxymugineic acid, the primary phytosiderophore from rice and barley, involves the TOM1 and HvTOM1 genes, respectively. Xenopus laevis oocytes expressing TOM1 or HvTOM1 released (14)C-labeled deoxymugineic acid but not (14)C-labeled nicotianamine, a structural analog and biosynthetic precursor of deoxymugineic acid, indicating that the TOM1 and HvTOM1 proteins are the phytosiderophore efflux transporters. Under conditions of iron deficiency, rice and barley roots express high levels of TOM1 and HvTOM1, respectively, and the overexpression of these genes increased tolerance to iron deficiency. In rice roots, the efficiency of deoxymugineic acid secretion was enhanced by overexpression of TOM1 and decreased by its repression, providing further evidence that TOM1 encodes the efflux transporter of deoxymugineic acid. We have also identified two genes encoding efflux transporters of nicotianamine, ENA1 and ENA2. Our identification of phytosiderophore efflux transporters has revealed the final piece in the molecular machinery of iron acquisition in graminaceous plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app