JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Animal models of pre-eclampsia.

The cardinal features of human pre-eclampsia, hypertension and proteinuria, are mimicked in animal models. Increasingly, the accuracy of inducing 'pure' systemic endothelial dysfunction is regarded as critical in differentiating mechanisms of pre-eclampsia from other conditions which induce hypertension (e.g. glomerulonephritis, renal denervation or manipulation of the renin-angiotensin system). A recent study in baboons has identified the timing of induction of maternal endothelial damage after acute uteroplacental ischaemia (UPI). The endothelial changes in the glomerulus are indicative of a direct endothelial toxin and mimic the lesions seen in human pre-eclampsia; the extent of hypertension and proteinuria are also similar. This animal model identifies systemic and placental sFLT-1 (soluble fms-like tyrosine kinase-1) as a potential mediator of endothelial damage. This research involving primates with haemomonochorial placentas makes translation of these results to humans very compelling for understanding the mechanisms of human disease. Similar endothelial dysfunction has been identified in baboons treated with anti-inflammatory inhibitors. Similar studies in rodents have identified a relationship between angiotensin II agonistic antibodies, UPI/reduced uteroplacental perfusion pressure, angiogenic markers, and cytokines. We can now identify vasoconstrictive mediators of the hypertensive and endothelial response such as endothelin 1, the renin-angiotensin system, or other hormones such as oestrogens in primate models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app