Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks.

Bioinformatics 2011 January 16
MOTIVATION: Metagenomics is a recent field of biology that studies microbial communities by analyzing their genomic content directly sequenced from the environment. A metagenomic dataset consists of many short DNA or RNA fragments called reads. One interesting problem in metagenomic data analysis is the discovery of the taxonomic composition of a given dataset. A simple method for this task, called the Lowest Common Ancestor (LCA), is employed in state-of-the-art computational tools for metagenomic data analysis of very short reads (about 100 bp). However LCA has two main drawbacks: it possibly assigns many reads to high taxonomic ranks and it discards a high number of reads.

RESULTS: We present MTR, a new method for tackling these drawbacks using clustering at Multiple Taxonomic Ranks. Unlike LCA, which processes the reads one-by-one, MTR exploits information shared by reads. Specifically, MTR consists of two main phases. First, for each taxonomic rank, a collection of potential clusters of reads is generated, and each potential cluster is associated to a taxon at that rank. Next, a small number of clusters is selected at each rank using a combinatorial optimization algorithm. The effectiveness of the resulting method is tested on a large number of simulated and real-life metagenomes. Results of experiments show that MTR improves on LCA by discarding a significantly smaller number of reads and by assigning much more reads at lower taxonomic ranks. Moreover, MTR provides a more faithful taxonomic characterization of the metagenome population distribution.

AVAILABILITY: Matlab and C++ source codes of the method available at https://cs.ru.nl/gori/software/MTR.tar.gz.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app