Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Retinoid signaling in inner ear development: A "Goldilocks" phenomenon.

Retinoic acid (RA) is a biologically active derivative of vitamin A that is indispensable for inner ear development. The normal function of RA is achieved only at optimal homeostatic concentrations, with an excess or deficiency in RA leading to inner ear dysmorphogenesis. We present an overview of the role of RA in the developing mammalian inner ear, discussing both how and when RA may act to critically control a program of inner ear development. Molecular mechanisms of otic teratogenicity involving two members of the fibroblast growth factor family, FGF3 and FGF10, and their downstream targets, Dlx5 and Dlx6, are examined under conditions of both RA excess and deficiency. We term the effect of too little or too much RA on FGF/Dlx signaling a Goldilocks phenomenon. We demonstrate that in each case (RA excess, RA deficiency), RA can directly affect FGF3/FGF10 signaling within the otic epithelium, leading to downregulated expression of these essential signaling molecules, which in turn, leads to diminution in Dlx5/Dlx6 expression. Non-cell autonomous affects of the otic epithelium subsequently occur, altering transforming growth factor-beta (TGFβ) expression in the neighboring periotic mesenchyme and serving as a putative explanation for RA-mediated otic capsule defects. We conclude that RA coordinates inner ear morphogenesis by controlling an FGF/Dlx signaling cascade, whose perturbation by deviations in local retinoid concentrations can lead to inner ear dysmorphogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app