Add like
Add dislike
Add to saved papers

Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells.

Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent cells. They are able to differentiate into functional cells from not only mesoderm but also endoderm. Many researches showed that cells derived from fresh human UCB could transdifferentiate into insulin-secreting cells. In this study, transdifferentiating potential of cryopreserved human UCB-derived MSCs into insulin-secreting cell was investigated. Fresh human UCB was enriched the mononuclear cells by Ficoll-Paque centrifugation. The mononuclear cell population was cryopreserved in cryo-medium containing Iscove's modified Dulbecco's media (IMDM) with 10% DMSO at -196°C for 1 yr. After thawing, mononuclear cells were cultured to isolate MSCs in medium IMDM with 20% FBS supplemented with growth factors. At the fifth passages, MSCs were confirmed by flow cytometry about expression of CD13, CD14, CD34, CD45, CD166, and HLA-DR markers; after that, they were induced to differentiate into adipocytes and osteoblasts. After inducing with specific medium for islet differentiation, there were many clusters of cell like islet at day 14-28. Using real-time reverse transcription polymerase chain reaction (RT-PCR) to analyze the expression of functional genes, the result showed that Nestin, Pdx-1, Ngn3, Ils-1, Pax6, Pax4, Nkx2.2, Nkx6.1, Glut-2, Insulin genes expressed. The results showed that MSCs derived from banked cord blood can differentiate into functional pancreatic islet-like cells in vitro. If human MSCs, especially MSCs from banked cord blood of diabetes patients themselves can be isolated, proliferated, differentiated into functional pancreatic islet-like cells, and transplanted back into them (autologous transplantation), their high-proliferation potency and rejection avoidance will provide one promising therapy for diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app