Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Superior Z→E and E→Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at λ = 387 and 490 nm.

The ultrafast Z→E and E→Z photoisomerisation dynamics of 5,6-dihydrodibenzo[c,g][1,2]diazocine (1), the parent compound of a class of bridged azobenzene-based photochromic molecular switches with a severely constrained eight-membered heterocyclic ring as central unit, have been studied by femtosecond time-resolved spectroscopy in n-hexane as solvent and by quantum chemical calculations. The diazocine contrasts with azobenzene (AB) in that its Z rather than E isomer is the energetically more stable form. Moreover, it stands out compared to AB for the spectrally well separated S(1)(nπ*) absorption bands of its two isomers. The Z isomer absorbs at around λ = 404 nm, the E form has its absorption maximum around λ = 490 nm. The observed transient spectra following S(1)(nπ*) photoexcitation show ultrafast excited-state decays with time constants τ(1) = 70 fs for the Z and <50 fs for the E isomer reflecting very fast departures of the excited wave packets from the S(1) Franck-Condon regions and τ(2) = 270 fs (320 fs) related to the Z→E (resp. E→Z) isomerisations. Slower transient absorption changes on the time scale of τ(3) = 5 ps are due to vibrational cooling of the reaction products. The results show that the unique steric constraints in the diazocine do not hinder, but accelerate the molecular isomerisation dynamics and increase the photoswitching efficiencies, contrary to chemical intuition. The observed isomerisation times and quantum yields are rationalised on the basis of CASPT2//CASSCF calculations by a S(1)/S(0) conical intersection seam at a CNNC dihedral angle of ≈96° involving twisting and torsion of the central CNNC moiety. With improved photochromism, high quantum yields, short reaction times and good photostability, diazocine 1 and its derivatives constitute outstanding candidates for photoswitchable molecular tweezers and other applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app